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Class Task Method/Process Examples

Classical
approaches

Function
→ structure

Functional motif
scaffolding

Functional motif →
protein containing
this motif

TopoBuilder (54), RFdiffusion
(motif scaffolding) (20), RFjoint
(55)

Functional motif
generation and
docking

Binding target →
field of possible
interactions

RIFgen (60), COMBS (123),
Sculptor* (23), MaSIF (64, 65)

Zero-shot interaction
generationa

Binding target →
binding protein

RFdiffusion (protein targets) (20),
RFAADiffusion (small molecule
targets) (21)

Structure

Structure generation
(fragment)

Syntax →
Structure RosettaRemodel (69)

Structure generation
(repurposed structure
prediction networks)

Sequence →
optimization →
full-atom structure

Hallucination (56, 101), RFjoint
(55), Frank (80), Verkuil (119),
Hie (122)

Structure generation
(non-diffusion)

Noise →
backbone

Anand (87), SCUBA (74), Ig-VAE*
(23)

Structure generation
(diffusion / flow)b,c

Noise →
backbone

RFdiffusion (20), RFAADiffusion
(21), ProteinSGM (93), Chroma
(94), Protpardelle (backbone)
(95), Genie (24), FoldingDiff (25),
Framediff (26), FoldFlow (27),
FrameFlow (28), LatentDiff (29),
PVQD (30)

Structure
→

sequence

Local structure-guided Local structure →
local sequence

RosettaDesign (physics-based
potential) (15), ALP (102),
ProteinMPNN (103),
ProteinSolver (31), Structured
Transformer (32), PiFold (33),
Grade-IF (34)

Global structure
encoding
(encoder-decoder)

Full structure →
full sequence

ESM-IF (35), ABACUS2 (36),
ABACUS-R (37), ProstT5 (38),
SaProt (39), MIF-ST (104)

Other
approaches

Sequence Sequence generation Noise/prior →
full sequence

NOS/Lambo (40),
ProteinGAN*(41), Greener (42),
Progen2 (112), ProtGPT2 (113),
EvoDiff (114)

Sequence
&

structure

Co-design structure
and sequenced

Noise →
sequence &
structure / MCMC /
iterative
refinement

Hallucination (56, 80, 101),
RFjoint (25), Verkuil (119), Hie
(122), ProteinGenerator (127),
Protpardelle (all-atom) (95), Jin*
(43), AbDiffuser* (44), Luo* (45)



Table 1: Approaches to de novo protein design.
Underlined methods include experimental validation. *Fold/family-specific methods.

a“Zero-shot” typically refers to model generalization to new tasks which have not been seen during
training (46). Here we use it to refer to prediction/generation of new binders when no successful binders
are used to guide solutions, though in practice the model has been trained on binder-target pairs and it is
not uncommon that binding targets have been seen previously during training.
bCurrent protein diffusion models also condition on the protein length (in addition to noise). Prior
distributions on length are typically uniform or task-specific.
cDiffusion models possess a natural relationship to flows as both are often implemented as neural ODEs
(47). Indeed, diffusion under the probability flow ODE is a form of continuous normalizing flow, allowing
exact likelihood computation and latent variable inference (118), and further work to translate the efficient
training and performance of diffusion to flows has been explored through flow matching approaches (48,
49). Both diffusion and flow models can be viewed as special cases of stochastically interpolating models,
a general framework for mappings between arbitrary pairs of distributions which offers additional flexibility
over standard diffusion, such as not requiring a Gaussian prior (50). Flow-based protein generation was
first suggested by Chroma and implemented by Protpardelle (94, 95), with further development in
FoldFlow and FrameFlow (27, 28), but extension of non-diffusion stochastic interpolants to design
applications remains nascent. Some of these explorations relate to using non-Gaussian priors which have
a coupling with the target distribution (i.e. paired data), such as sampling conformations from structure or
binding complexes from monomers (27, 51).
dMany “joint” methods and compositions of methods are presented as models of the joint distribution of
structure and sequence, and can indeed be posed as such: they might be able to ascribe a probability,
energy, or density to a set of structure and sequence variables; or more stringently, they might admit
sampling of (structure, sequence) pairs which are mutually consistent, whether simultaneously,
sequentially/ancestrally, in a Gibbs-based fashion, or otherwise. We suggest that to be maximally
effective, a joint co-design model should possess these capabilities in addition to methods for
marginalizing and conditioning the joint distribution (i.e. conduct structure and sequence generation
independently, as well as structure prediction and sequence design).



Methods PDB ID

Library screening 8H7C

Rational design 7BEY, 6Z0L, 6Z0M, 6REN, 6ZT1

Rosetta + Library screening 7BWW, 6OHH

Rosetta fragment assembly from
blueprints

8BL6, 7SKP, 7SKO, 7SKN

Crick equations + Rosetta HBNet +
RosettaDesign

6MSQ, 6MSR, 8GL3, 6N9H, 6NAF

Rule-Based + Database Fragment Search 6MCT, 6MQU, 6MPW, 6MQ2, 8DPY

Rule-Based + Negative Design in Rosetta 6X9Z

Database Interactions Search 6W70, 5HRZ

TopoBuilder + Rosetta FunFolDes +
Library screening

6YWD, 6YWC

RoseTTAFold Joint Inpainting 8DT0

AF2 Hallucination + ProteinMPNN 8FJG, 8FJF, 8FJE, 8CYK, 8OYY

trRosetta Hallucination 7K3H, 7M0Q

Rosetta Remodel 8GAA

Rosetta Remodel + RosettaDesign 6NX2, 6NXM, 6NY8, 6NYE, 6NYI, 6NZ3, 6NZ1, 6NYK

Rosetta Remodel + ProteinMPNN 8EOX, 8EOZ

Custom RosettaScripts 8FBI, 8FBN, 8FBJ, 8FBK, 8E55, 8E1E (DegreaserMover),
7JH5, 7CBC (GraftSwitchMover)

Kinematic Loop Closure 6UD9, 6UFU, 6UF7, 6UDW, 6UF8, 6UFA, 6UDR

Crick equations + Kinematic Loop Closure 8EK4

Rule-Based + Rotamer Interaction Field 6D0T, 6CZI, 6CZH

Rule-Based 8BFD, 8A09

RPXDock 8FWD

RosettaDesign 6VFK, 6VFH, 6VFI, 6VFJ, 6VL6, 6VEH

WORMS 6XNS, 6XT4, 6XH5, 6XSS

Rosetta SEWING 7TJL

Table 2: Methods used to design select protein structures in Fig. 6.




