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Sparks of function by de novo protein design

Alexander E. Chu    1,2,3, Tianyu Lu    2 & Po-Ssu Huang    1,2 

Information in proteins flows from sequence to structure to function, with 
each step causally driven by the preceding one. Protein design is founded 
on inverting this process: specify a desired function, design a structure 
executing this function, and find a sequence that folds into this structure. 
This ‘central dogma’ underlies nearly all de novo protein-design efforts. 
Our ability to accomplish these tasks depends on our understanding of 
protein folding and function and our ability to capture this understanding in 
computational methods. In recent years, deep learning-derived approaches 
for efficient and accurate structure modeling and enrichment of successful 
designs have enabled progression beyond the design of protein structures 
and towards the design of functional proteins. We examine these advances 
in the broader context of classical de novo protein design and consider 
implications for future challenges to come, including fundamental 
capabilities such as sequence and structure co-design and conformational 
control considering flexibility, and functional objectives such as antibody 
and enzyme design.

De novo protein design was born out of a desire to reduce the complex-
ity of protein folding down to basic physical principles. It was hypoth-
esized that, with sufficient understanding of the rules governing protein 
folding, it might be possible to create new proteins from scratch1,2. In 
time, this hypothesis has proven true. The guiding physical principles of 
protein design are simple, but the process of applying these principles 
leads to vastly diverse structural outcomes, unlocking a new era of func-
tional protein design3. For many problems in protein design, de novo 
design has become more effective than computationally manipulating 
or adapting native protein structures to achieve a desired function4.

Traditionally, protein structure and its interaction with sequence 
are understood in an energetic and biophysical sense: what are the 
three-dimensional interactions that amino acid residues make with 
each other? How do they stabilize a particular conformation of the 
protein chain or an interaction with a ligand or substrate? The ability 
to capture the diverse behaviors of proteins with a set of atomic-level 
physical equations is attractive, providing an interpretable view of 
the forces that sustain a structure. Indeed, the earliest protein-design 
methods used this approach successfully to define structures of new 
proteins and resample side chains for new sequences5–10.

However, the space of all possible protein conformations and 
sequences is far greater than can be explored exhaustively in the 

timescales of protein folding or evolution or any kind of computa-
tional or experimental sampling scheme11,12. Yet somehow, through 
billions of years of evolution, nature has managed to produce a small 
set of proteins. For scientists who wish to solve problems on shorter 
timescales, drawing on data from nature’s ‘answer key’ has been a 
highly effective strategy. Since the first design of a new protein fold by 
assembling fragments of natural proteins13, protein data available in 
the Protein Data Bank (PDB) have grown rapidly. This has enabled an 
increasing role for incorporating data in protein design through tools 
such as structural fragment libraries, scoring functions regressed to 
data, sequence and rotamer statistics14–17, eventually leading to the 
design of protein structures with atomic accuracy3.

As methods for de novo design matured, it became relevant to also 
consider protein function. Could protein structures and sequences 
not only be designed from scratch but also accomplish desired func-
tions? In contrast to redesign of natural proteins, de novo approaches 
offer complete control over the structure and sequence, whereas 
natural proteins are often marginally stable and marginally functional. 
It can be hard to predict when an engineering change will result in an 
unfoldable protein. In recent years, our ability to design functional 
proteins has seen a step change, as fast, performant structure-design 
models combined with precise validation of designed sequences with 

Received: 5 November 2023

Accepted: 9 January 2024

Published online: 15 February 2024

 Check for updates

1Biophysics Program, Stanford University, Palo Alto, CA, USA. 2Department of Bioengineering, Stanford University, Palo Alto, CA, USA. 3Present address: 
Google DeepMind, London, UK.  e-mail: possu@stanford.edu

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-024-02133-2
http://orcid.org/0000-0002-6219-7887
http://orcid.org/0000-0002-3365-1542
http://orcid.org/0000-0002-7948-2895
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-024-02133-2&domain=pdf
mailto:possu@stanford.edu


Nature Biotechnology | Volume 42 | February 2024 | 203–215 204

Review article https://doi.org/10.1038/s41587-024-02133-2

In many cases, the relevant functional motifs can be extracted 
directly from natural proteins and scaffolded as part of a de novo 
protein structure. This strategy has been deployed to scaffold anti-
gen epitopes on the surface of designed immunogens54. Other suc-
cesses with this approach include scaffolding peptide-binding motifs, 
metal-binding sites and ligand-binding motifs to accomplish the rele-
vant functional task55,56. These motifs can also be extracted from nature 
to support a designed function, such as the placement of positively 
charged residues near the membrane–solvent interface in the case of 
designing transmembrane channels19,57,58.

This approach requires known solutions from already functional 
proteins for the problem of interest. More general approaches to devise 
yet unknown functional motifs require breaking down the interaction 
to basic chemical elements and handling the possible combinations 
and arrangements of these elements accurately. One class of methods 
solves this problem by considering the chemical properties of the tar-
get and enumerating the interactions that a protein might use to bind 
to the target (Fig. 2)59,60. They can also be culled directly from the PDB, 
relying on statistical enrichment to capture the most effective interac-
tions and perhaps average out noisier information such as side chain 
flexibility61,62. For these side chain-focused methods, choosing small, 
fine-grained chemical groups (such as amides or carbonyls) increases 
the number of unique examples and enables generalization to more 
complex motifs. This interaction field approach is generalizable to 
arbitrary binding interactions and has been successfully applied to 
design de novo binders against conformer-specific small-molecule 
ligands59,61, miniprotein binders and ultra-high-affinity de novo bind-
ers to receptors60, monobody binders to nerve toxins62 and binding 
to nucleic acids63.

Other approaches seek a higher level of abstraction by capturing 
features of functional interfaces with machine learning. For protein–
protein interfaces, machine-learned representations of a surface can 
be used to propose the binding counterpart. Embeddings of protein 
surfaces can be learned that capture general biophysical and biochemi-
cal properties of an interface region as well as additional information 
that may be encoded in subtle variations in the sequence but is dif-
ficult to explain with energy functions or visual inspection. The patch 
embeddings from a target protein can then be inverted and mapped 

AlphaFold have led to a new age of functional design in which proteins 
are designed from scratch to conform to functional motifs, rather than 
altered from existing proteins (whether de novo or natural) to support 
these motifs. This has unlocked several applications, including supra-
molecular assemblies, transmembrane pores and protein, ligand and 
metal binders18–21.

In this Review, we examine each of the three pillars of the ‘central 
dogma’ of de novo protein design: (1) how functional goals can be 
mapped to structural motifs accomplishing these goals, (2) how we can 
control and design protein structure, especially in response to these 
motifs, and (3) how sequence is sampled so that the designed structure 
is attained and functional roles are fulfilled by side chains (Fig. 1). For 
each pillar, we discuss the insights and strategies that have arisen to 
enable more accurate protein design and survey the key methods that 
have demonstrated our improved capacity to generate functional 
proteins. We explore the potential of new approaches that expand 
beyond the current paradigm, including alternate ways to model struc-
ture and sequence and modeling of conformational dynamics and 
heterogeneity. We conclude by discussing remaining challenges for 
functional design and give an outlook for the field. Methods are sum-
marized in Supplementary Table 1; in addition to works cited below, see  
refs. 22–51 therein.

Deriving structure from function
De novo design of a functional protein begins with identifying the 
features needed to accomplish the intended function. Examples of 
common objectives include designing proteins to engage immune 
cells, creating binders for drugs, nucleic acids or other proteins, stabi-
lizing the transition state of a reaction for new enzymes and developing 
ion-specific transmembrane channels. Regardless of the application, 
the approaches are built on the principles of energetic stabilization and 
shape complementarity1,52. In earlier de novo design efforts, the design 
of any foldable protein was already considered a major achievement, 
and efforts to attain function centered on introducing changes to these 
scaffolds to accommodate a functional motif (in a minimal way)2,53. 
With the rise of increasingly powerful design methods, specifying the 
functional motif first and then searching for protein scaffolds that are 
consistent with this motif has become the more common path.

Finding a structure or defining
a topology to create a new 
structure that can host the amino
acid residues that define function

Resolving the amino
acid identities that
can maintain the designed
functional protein

Function Structure Sequence

Defining the objectives
to optimize, usually
through spatial arrangements
of amino acids

Fig. 1 | The central dogma of de novo protein design. Protein design generally follows this workflow: specify a desired function, design a structure that can 
structurally host this function, and find a sequence that folds into this structure. This central dogma underlies nearly all de novo protein-design efforts.
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to sets of favorably interacting motifs for scaffolding into a designed 
protein; this approach has been shown to yield high-affinity protein 
binders to diverse targets (Fig. 2)64,65.

For some binding interactions, extracting interface features can 
be bypassed entirely if a model can be trained on relevant data, which 
allows generalizing to new, unseen examples. This zero-shot transfer 
learning approach allows the model to reuse learning from data-rich 
regimes on problems that are data poor. For example, there are far 
fewer protein complexes than monomers in the PDB, but models that 
are trained on monomers can still learn about protein complexes 
through the features shared by both types of data: the fundamental 
forces governing interactions between amino acids. Even if the mod-
els are not explicitly trained to capture the physics, similar under-
lying patterns appear in both monomers and complexes, allowing 
for improved performance on the latter. In practice, models can be 
further finetuned on scarcer task-specific data beyond relying solely 
on model generalization. This concept has been implemented to gen-
erate high-affinity binders for multiple targets20,66 and has also been 
extended to small-molecule ligands21.

Designing structure from scratch
With a functional motif defined, devising a protein structure to satisfy 
the constraints posed by it is one of the most challenging aspects of 
protein design. We previously reviewed conventional backbone-design 
methods3 and suggested that the space of designable sequences 
might remain largely unexplored. De novo protein design enables this 
exploration by breaking down structure design into the hierarchical 
components of topology, which defines the sequence and arrange-
ment of secondary-structure elements, and syntax, which defines the 
lengths of these elements67,68. In conventional protein design, these 

definitions are captured in a blueprint, which can be implemented by 
fragment-assembly routines14,69.

Designing protein structures in this conventional fashion still 
offers the most interpretable way to model protein structures. For 
example, designs incorporating key structural insights have refined 
our ability to control β-barrel-forming structures, which are impor-
tant in enzymes and membrane protein applications19,59,70. Since the 
principles for building triosephosphate isomerase (TIM) barrels were 
first established71, altering the central β-barrel to have an ovoid (rather 
than circular) shape has been a major goal, because it is more suit-
able for incorporating small-molecule-binding sites. This proved to 
be difficult by conventional protein engineering, but revisiting the 
basic topology revealed that an oval-shaped TIM barrel is the result of 
sliding two half-circular barrels along the tilted β-strands (Fig. 3a)68. 
In developing de novo β-barrel proteins into membrane proteins, 
Vorobieva et al. came to the important insight that destabilizing ele-
ments of a designed structure allow the peptide chain to be inserted 
into the membrane. The same guiding principles for building β-barrels 
also yielded a proof-of-principle stereoselective retro-aldolase72. 
Few other approaches can reveal the inner workings of proteins to 
this depth. However, despite having complete control over the con-
struction of a structure to the individual residue level, adapting these 
designs for function can be difficult due to the stringent conformity 
to idealized building blocks. Natural proteins tolerate, even require, 
non-ideal structures to achieve complex function, and this inspired 
efforts to find more sophisticated processes to accomplish de novo 
protein design.

Our ability to manipulate protein structure in response to func-
tional constraints has seen enormous change with the application of 
deep learning73. In an approach similar in spirit to the original energy 
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Fig. 2 | Defining functional motifs in protein design. A spectrum of approaches 
for extracting functional motifs from physics-inspired or data-driven models. 
a, Rotamer interacting fields (RIFgen and RIFdock) enumerate the space of 
favorable chemical interactions, scored using an explicit energy function, and 
use inverse rotamers to successively generate each torsion angle of the side 
chain up to the backbone. b, Extracting observed chemical interactions from 
the PDB, each termed a van der Mer (vdM), and scoring them with a combination 
of energies and statistical enrichment. COMBS applies this approach to 
identify backbone–ligand interacting chemical groups, and Sculptor identifies 

favorable protein–protein binders. c, Machine learning models such as MaSIF 
can be trained on protein and chemical data to learn high-level embeddings of 
functional surfaces, which can then be used to score structural elements on their 
complementarity. d1–d3, dimensions 1–3. d, With the appropriate pretraining 
task, generative models can directly learn the nature of protein–protein and 
protein–ligand interactions and sample according to these patterns. Illustrations 
adapted from refs. 20,59,60,64, Springer Nature; adapted with permission from 
ref. 61, AAAS; adapted with permission from ref. 21, CC-BY-ND 4.0; and adapted 
from ref. 62.
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landscape-based perspective on de novo design, learned and statisti-
cal potentials can be used in place of physics-based potentials to guide 
structure search, enabling a similar ability to produce new-to-nature 
structures and topologies74. The advent of highly accurate protein 
structure prediction using the AlphaFold system and the subsequent 
development of trRosetta and RoseTTAFold75–79 opened new ways 
to generate proteins. By learning to map the distribution of protein 
sequences to the distribution of structures, these methods appeared 
to encode information about both within a single differentiable net-
work. Efforts to tease out what these predictive models learned about 
structure gave rise to the class of hallucination-based approaches, 
which explored various ways to invert structure-prediction networks 
by optimizing and resampling the sequence inputs until they produced 
realistic output structures56,80. A similar approach found that a masking 
objective applied during RoseTTAFold training could be extended to do 
‘inpainting’, that is, completing missing regions of a partially masked 
structure55,81. These approaches yield de novo proteins in a mostly 
automated way, without requiring the intense structural scrutiny and 
large-scale sampling devoted to previous design efforts. This enabled 
searching protein structure space broadly and quickly for solutions 

to design constraints, leading to successful scaffolding of various 
functional motifs and inputs in new de novo proteins.

In a parallel approach, deep generative modeling emerged as 
a powerful strategy for efficient sampling from high-dimensional 
distributions for which we have plentiful data, such as images and 
text82–86. These models learn to approximate a mapping from a dis-
tribution that is easy to sample from, such as a Gaussian distribution, 
to a data distribution of interest. This method can also be applied to 
protein design and provides a more natural way to generate protein 
structures by construction62,87 without having to hack the inputs to 
a structure-prediction network. An important advance in generative 
protein design occurred with the rise of diffusion-based generative 
models, which attain high sample quality while providing more stable 
training and better diversity than other types of generative models88–93. 
These models benefit from an iterative generation mechanism that 
begins with white noise and denoises coarse features first before fill-
ing in fine details, rather than attempting to synthesize the full atomic 
structure in one shot. This inductive bias, or learning architecture, 
aligns well with the hierarchical nature of protein structure, breaking 
the structure-generation problem down into problems of high-level 
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Fig. 3 | Controlling protein structure to scaffold functional elements. a, The 
basic approach of de novo structure design. First, a topology, or arrangement 
of secondary-structure elements, is defined. Next, the lengths of these 
elements, which heavily influence the tertiary structure, must be defined 
(the syntax). Finally, a structure can be sampled conditioned on this syntax 
secondary-structure string using parametric equations, Monte Carlo fragment 
assembly or generative models. Abbreviation: s, shear number. b, The tradeoff 
between design and automation. With fully handcrafted syntaxes, the protein 
designer has full control over the design process and can specify unique and 
new topologies and structures, but this approach requires substantial manual 
curation and inspection. More automated methods that allow more complex 

parametric models to sample the topology, syntax and structure with minimal 
human intervention may be more accessible, reproducible and efficient but 
afford less control over the design process and are less interpretable. In between 
are methods that integrate some user-specified information and build up the 
remaining structure based on physics and statistics. Abbreviations: 2D, two 
dimensional; 3D, three dimensional; SSE, secondary structure element; ρ, 
probability density; Q, set of structural variables. c, Generated structures from 
RFdiffusion (orange contours) show enrichment of secondary-structure content 
compared to those from the PDB (green), which have more regions lacking in 
secondary structure. Illustrations adapted from refs. 20,74,146, Springer Nature, 
and adapted from ref. 147, CC-BY 4.0.
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tertiary organization first, followed by local secondary structure and 
finally chemical detail (Fig. 4). These models exhibit the capability to 
implicitly model topology and syntax, choosing to allocate protein 
residues to different types of secondary structures during this pro-
cess. With improved generation quality came the ability to outpace 
physics- and hallucination-based methods for rapid structure search 
under conditioning20,94,95. RFdiffusion has been used to solve diverse 
protein-design problems with success rates orders of magnitude higher 
than those of previous methods, including scaffolding motifs, generat-
ing symmetric oligomers and designing metal and protein binders20. 
This success and the success of related models exhibit the strengths 
of deep learning-based structure design: faster and more efficient 
sampling, a high degree of automation and reproducibility and new 
solutions of high realism and quality.

Despite being trained on the natural distribution of protein struc-
ture, many design models sample from a distribution more aligned 
with design objectives that produce more globular proteins with clean 
topologies, syntaxes and fewer loop residues than natural proteins  
(Fig. 3c). It is unclear what gives rise to this latent distribution, but possi-
bilities include regularization in neural networks and low-temperature 
sampling. Regularization comes in many forms, such as dropout layers, 
noising data augmentations and restricted model architectures, and 
are intended to reduce overfitting to irregularities and outliers, such 
as loop regions. Temperature-adjusted sampling, inspired by the role 
of temperature in statistical mechanics, trades off sample quality 
with diversity and is implemented with the temperature parameter in 
Chroma, the noise scale in RFdiffusion, the step scale in Protpardelle 
and various other strategies. Reducing the sampling temperature 
redistributes density from the tails of the data distribution to concen-
trate it at the modes, effectively exploring fewer states and focusing on 
high-probability ones. This is likely applied because the learned distri-
butions fail to exactly recapitulate the natural distributions, especially 

in the tails, and enriching for high-quality samples is best attained by 
sampling at the modes. Whatever the underlying cause, it is observed 
empirically that these generative models sample from sharpened, 
centralized distributions that filter out the structural ‘noise’ present in 
natural proteins and yield the idealized backbones typical of de novo 
design, which are simpler to understand and easier to fold (Fig. 3c).

Designing sequence to specify structure and 
function
In the end, only a sequence is needed to describe a protein in full, but a 
simple string of amino acids, and the process of deducing the correct 
one, carries more complexity than meets the eye. When examining the 
sequence directly, features such as patterns of polar and hydrophobic 
residues as well as strategic use of glycines and prolines can be ana-
lyzed to offer a simplistic picture of protein properties, for example, its 
secondary-structure content or whether it can be a membrane protein. 
When viewed together with the structure, however, every facet of the 
sequence including length, pattern and amino acid identities defines an 
exquisite agreement with its three-dimensional structure. It may even 
be fair to say that, although the sequence is the ultimate expression 
of a protein, it is made to serve the functional purpose of the protein 
structure. In defining the sequence of a de novo protein, the searchable 
sequence space can be more extensive than that for native proteins, 
as structure becomes the only constraint, unbound by evolutionary 
requirements59,70,96,97. This is also true for exploration of local nearby 
sequences, for example, to improve the function of an enzyme98.

Thoughtful sequence design can illuminate new insights into the 
interaction between protein sequence and structure. For example, 
the specificity of side chain packing is typically considered crucial 
for driving a polypeptide chain into a well-defined fold rather than a 
molten globule state. While investigating the influence of side chain 
mutations on stability, Koga et al. uncovered a counterintuitive result 

Predicted structure from xt noise

х̂0

хt

t = 1.0 0.7 0.5 0.3 0

Di	usion process

Fig. 4 | Hierarchical nature of diffusion models. An example diffusion sampling 
trajectory from backbone-only Protpardelle, which diffuses with Gaussian noise 
directly on the Cartesian coordinates of the protein backbone atoms95. The 
parameter t represents the proportion of noise that has been added; therefore, 
t = 0 indicates no noise, t = 1 indicates maximum noise, xt represents the inputs to 
the denoising network at timestep t and x̂0 = fθ(xt) represents the network 
predictions of clean or denoised data, where θ denotes the parameters of the 
network f, that is, what the data should look like at t = 0, given the inputs xt. Note 
that the absolute value of t may not correspond exactly to the noise variance 
(σ = f(t) in general); for example, for this particular diffusion process, the 

standard deviation of noise added σ = 800 when t = 1; therefore, we downscale the 
coordinates to fit in the context of this figure. While to the human eye very little 
structural detail is apparent in the sampling trajectory (xt) until late in the 
denoising process, we can see that the model extracts signal (x0) in a way that 
proceeds from ‘low-frequency’ information (that is, tertiary organization, which 
involves many atoms) to ‘medium-frequency’ features (for example, secondary 
structure, which involves fewer atoms) and eventually ‘high-frequency’ details 
(such as bond lengths and angles, which involves only a few atoms). For further 
discussion, see section 5 of ref. 148.
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on hydrophobic packing specificity, namely that, in an idealized topol-
ogy (in this case, a Rossmann fold), it is possible for a protein to retain 
structural and thermodynamic properties despite massive mutational 
perturbations99. Specifically, despite the mutation of all buried hydro-
phobic residues from large to small side chains (for example, leu-
cine or isoleucine to valine), the protein was able to not only remain  
folded but also retained high thermostability and an identical folded 
state structure.

Similar to structure design, fixed-backbone sequence design, also 
known as inverse folding, has also profited from deep learning and 
data-driven approaches. The combinatorial nature of sequence space 
mirrors that of protein structure, which explodes with the length of 
the protein and can be very difficult to search over. As with structure 
design, structure-prediction models provide an effective handle to 
grapple with this space, and the same approaches that can be used 
to produce protein structures from these networks can also be used  
to design sequences. Earlier work explored the capacity of trRosetta to 
define a sequence profile based on a target structure, guiding conven-
tional methods to better conform to the global energy landscape100. 
Later, hallucination and masked inpainting methods were also found 
to be effective for extracting sequences from structure-prediction 
networks55,56,80,101. However, optimizing under AlphaFold2 directly with 
hallucination often yielded adversarial sequences, meaning sequences 
that AlphaFold2 predicts with high confidence but that fail to express 
in the wet laboratory18,80. The most effective sequence-design meth-
ods benefit from the strong constraint of a target structure that lim-
its the search space: the optimal amino acid for a position is mostly 

determined by its local environment. This inductive bias is exploited 
to great effect by various types of sequence-design methods, including 
Gibbs and Metropolis sampling algorithms guided by physics-based 
or learned potentials15,102 and masked language and autoregressive  
models103,104. These methods enable a high level of automation, generat-
ing high-quality sequences quickly with little or no manual intervention 
and even rescuing unfoldable sequences designed by conventional 
methods such as Rosetta in the case of ProteinMPNN103.

Perhaps the most important result in protein design in the last 
few years is the ability to evaluate designs with the self-consistency 
or designability metric. Previously, computational designs were 
validated by ab initio structure prediction, essentially simulations 
of protein folding guided by an energy function, which probed the 
ability of a designed sequence to find the correct structure. These 
simulations were highly informative, offering statistical and structural 
insights on the impact of pathological amino acids in the sequence. 
However, they required large-scale computation for limited accuracy 
and exhibited poor correlation with experimental success. With the 
advent of accurate structure-prediction methods such as AlphaFold, it 
became possible to compare the predicted fold of a designed sequence 
and the original designed structure. Relatively quick computation 
enables predicting the folded state of a designed sequence together 
with a confidence metric (such as pLDDT or pAE). One might expect a 
sequence that is predicted to fold back to the designed structure with 
high confidence (‘self-consistent’ or ‘designable’) to be more consist-
ent with the designed structure and thus potentially more likely to 
fold in the wet laboratory (Fig. 5)55,60,105. In general, these findings have 
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substantially increased the speed and the efficiency of method develop-
ment because models and designed sequences can be more faithfully 
evaluated in silico without requiring slower and more laborious feed-
back from wet laboratory validation. We also note that further work 
remains to improve these in silico metrics. Precision can be improved, 
as AlphaFold2 is susceptible to adversarial inputs, although filtering 
designs through an orthogonal metric (for example, using AlphaFold2 
pLDDT when sequences are hallucinated from RoseTTAFold)55 or using 
structure-prediction networks that contain a language model106 seems 
to mitigate this effect. The true recall is unknown because it is possible 
that AlphaFold2 may be ‘overfit’ to natural protein sequences and it is 
hard to estimate how often it rejects de novo sequences that would be 
valid, and, even within known sequence space, many natural, functional 
proteins cannot be predicted free of multiple sequence alignment 
(MSA) and would fail the self-consistency test103.

More broadly, the structure-prediction task has proven to be very 
useful for protein modeling and design, with models shown to capture 
much more information than simply a mapping from MSAs to structures. 
Investigation into AlphaFold2’s ability to discriminate between success-
ful decoys in structure prediction suggests that the structure module 
learns a form of implicit ‘energy landscape’ that allows it to evaluate the 
plausibility of a given structure and may explain its ability to generalize 
to diverse tasks107. In addition to other applications for structure and 
sequence design previously discussed, AlphaFold2 has been found to 
be effective for predicting protein–protein interactions105, predicting 
and designing cyclic peptides108 and predicting small-molecule-binding 
sites109, despite not being trained specifically for these tasks.

Finally, in a phenomenon analogous to the idealized distributions 
observed in structure modeling, it appears that learned sequence 
models also produce more ‘modal’ samples, perhaps due to similar 
effects of regularization and temperature-tuned sampling schemes. 
One symptom of this is that model likelihoods are typically higher on 
de novo-designed sequences than on natural protein sequences102,103. 
Thus, while they may have been trained to try to reproduce the natural 
protein distribution, a hidden de novo distribution can be extracted 
from within the learned natural distribution with low-temperature sam-
pling and other strategies. To complete the cycle, this distribution of 
de novo proteins interacts favorably with AlphaFold2. Single-sequence 
(MSA-free) prediction with AlphaFold2 seemed to perform poorly with 
natural sequences but much better with de novo-designed protein 
sequences, with high self-consistency for these, enriching specifically 
for successful designs103. Why this occurs remains unknown; perhaps 
these de novo sequences contain more ‘folding signal’ (ref. 110). We 
observe that the highest AlphaFold2 self-consistency values and the 
highest rates of experimental success are achieved when sampling from 
sharpened (for example, idealized) structure and sequence distribu-
tions, compared to samples closer to natural distributions.

Looking beyond the central dogma
There is an old parable about a group of blind people who encounter 
an elephant. Each person interacts with a different part of the elephant 
by touch. The first handles the trunk and describes the elephant as 
being like a snake. The second touches the ear and decides that the 
elephant is some kind of fan. A third person feels the leg and declares 
the elephant to be the trunk of a tree. While none of them are incor-
rect in their observations, they all have unique perspectives that only 
partially touch upon the complete truth.

Like elephants, proteins also have many unique attributes and 
representations, although sometimes we may focus on only a single 
one, such as the modeling of backbone structure. The classical hier-
archy of function–structure–sequence enabled progress to be made 
by breaking down the grand challenge of protein design into more 
tractable subproblems. Like the blind men in the parable, solutions to 
these subproblems, while effective, only consider a single facet of the 
many-sided nature of proteins. These approaches are more restrictive 
than the true nature of protein function: in real proteins, sequence 
influences structure through side chain interactions, function-guided 
evolution constrains the sequences of proteins with highly similar 
structures and other harder-to-observe variables such as conforma-
tional dynamics or cellular context interact with all three.

The influx of new methods coinciding with the rise of deep learn-
ing for protein design has already begun to bring new perspectives 
on protein modeling and design. These include approaches that 
directly model sequence, perhaps conditioned on or jointly with func-
tional properties111–114. These protein language models have shown 
the ability to capture information from sequence evolution, explor-
ing the sequence space of natural protein families and solving some 
protein-design tasks such as scaffolding. Their capacity to explore 
de novo sequence space increases substantially when they have access 
to structural information. Language models have been shown to learn 
some understanding of structure by way of coevolution, the same 
mechanism underpinning modern structure prediction115–121, and, when 
equipped with a structure head, they have been used successfully to 
generate de novo proteins119,122.

As modeling capabilities improve, it is natural to consider increas-
ingly integrative approaches to protein design, such as all-atom mod-
eling and co-design of protein structure and sequence. We distinguish 
between all-atom modeling, which is the simultaneous generation 
of backbone structure and side chain structure, and structure and 
sequence co-design, which is the simultaneous generation of structure 
and sequence. All-atom modeling re-emphasizes the role of side chains 
in protein design, which might otherwise seem like an afterthought in 
the central dogma but are of course critical in defining protein function. 
Such models enable the design of proteins with side chains considered 
jointly with backbone throughout the generation process, allowing for 
explicit modeling of chemical interactions with a target, for side chains 
to influence the backbone conformation and even for explicit condi-
tioning on side chains without backbone95. Co-design extends this by 
incorporating meaningful prior distributions on sequence and could 
enable conditioning structure design on sequence information and vice 
versa or conditioning both jointly on functional information. Protein 
structure is degenerate, containing only a small number of unique 
secondary-structure types and a limited set of ways to combine these 
into tertiary motifs123. Sequence is a much richer and more expressive 
representation, but, as a result, its design space has been less exhaus-
tively explored by evolution. A combination of the strengths of each 
approach could enable broader exploration of protein space through 
structure while giving fine resolution through sequence112,113,124–126. 
Repurposed structure-prediction networks immediately suggested a 
natural way to co-design protein structure and sequence, as the out-
puts include both a structure and a sequence that are self-consistent 
by construction55,56,100,101, but these methods can be prone to adver-
sarial outputs18,80,101,103. Generative modeling approaches were recently 
extended to include sequence diffusion with structure guidance127, 

Fig. 6 | Examples of functional de novo design. Of particular note: 7K3H 
and 7M0Q are trRosetta-hallucinated structures56; 8CYK is an example of an 
adversarial sequence rescued by ProteinMPNN103; each of chains X, Y, Z in 8SK7 
is a binder generated by RFdiffusion20; 6MSQ and 6MSR are designed by tuning 
contributions to the predicted free energy of folding from hydrophobic layers, 
pH-responsive polar layers and pH-independent polar layers149. The majority of 
structures are generated from a combination of methods, such as the various 

tools in Rosetta (8GAA)150, library screening (8H7C)151, rational design (7BEY)152, 
parametric helical bundles (6MSQ)149, kinematic loop closure (6UD9)153, 
rule-based design, rotamer interaction field (6D0T)59, database fragment and/
or interaction search and assembly (6W70, 6MCT)61,97, customized docking 
protocols (8FWD) and negative design (6X9Z)19. Methods used to design select 
protein structures are listed in Supplementary Table 2. Ig, immunoglobulin.
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all-atom structure diffusion with side chain awareness95 and sequence 
and structure co-design with protein language models119,122. However, 
a true foundational model that exhibits generalization through struc-
ture and fine control over sequence, with the ability to generate and 
map between either one and infer causal relationships with function, 
a model that ‘sees the whole elephant’, so to speak, remains lacking.

The other ‘elephant in the room’ is the dynamic nature of protein 
structures. A strong assumption throughout de novo protein design as 
we have presented it here is that the folding and function of a protein 
is largely enthalpic in nature: structures can be designed by directly 
stabilizing the folded state while ignoring competing states, and func-
tion is mediated entirely through the interface with the target110. Of 
course, static structure is an incomplete model that we work with out 
of convenience. To date, both large-scale and fine-grained dynamic 
behavior and even intrinsic disorder have been achieved by design128–132, 
and some consideration has been given to multiple states in sequence 
design100,103,127,133, but this area remains underexplored, in part due to 
the paucity of ensemble and dynamics data and the difficulty of in 
silico evaluation. Much as how the rapid growth of the PDB has enabled 
advances in protein structure modeling, the development of large, 
standardized conformation datasets should unlock further progress 
in this area134. Reincorporating physics-based inductive biases into 
existing deep learning models may also allow for generalizing to con-
formations while leaning only on static structure data.

Examining specific applications of protein-design methods (exam-
ples shown in Fig. 6), two areas of interest are the design of antibod-
ies and enzymes. Both applications present unique challenges for 
current design methods. Antibodies are ubiquitous as a therapeutic 
modality, and the ability to design them relatively quickly and cheaply 
compared to animal immunization would be of substantial impact135. 
In comparison to de novo protein binders, antibodies typically affect 
binding through loop-rich complementarity-determining regions, 
which are difficult to model compared to helices and sheets for both 
design and evaluation methods such as AlphaFold2 (refs. 1,136). It is of 
similar importance to control the developability properties of antibody 
sequences to avoid oligomerization and other behaviors that interfere 
with their ability to function as therapeutics137.

Enzymes are frequently sought after in applications in which 
catalysts that can unlock new chemical transformations or function 
efficiently in mild conditions would contribute to sustainability, new 
materials and synthesis pathways. These molecules also present a diffi-
cult challenge for structure-based de novo design, as the sub-angstrom 
scale of the physical process, bond breaking and forming, requires 
a degree of accuracy that is not always attainable in structural data-
sets or with protein-design methods. Recent advances include scaf-
fold recombination and hallucination to generate diverse solutions 
for placing catalytic motifs138,139. In some cases, manual intervention 
with information from evolution has been required98. Accurate mod-
eling of multiple conformational states would likely be beneficial 
to both antibody and enzyme design, for example, the effects of 
complementarity-determining region flexibility on antibody binding 
affinity and modeling changes in active site geometry given proximal or 
distal mutations and their effect on catalytic activity. Recent methods 
for conformational sampling such as EigenFold, Distributional Gra-
phormer, PepFlow and MSA subsampling and clustering with AlphaFold 
can build toward methods in this direction140–144.

Finally, a remaining broad challenge is the complexity of affect-
ing phenotypes in cells and organisms with protein design. While 
our capacity to design functional proteins has increased rapidly in 
recent years, solving the molecular recognition component remains 
only a small part of this challenge. For example, affecting chromatin 
organization or gene expression may involve deeper insights than 
simply nucleic acid or histone binding. To direct the behavior of cells, 
receptor binding is often only the first challenge to be solved. Of direct 
interest and impact to society is the potential of designed proteins to 

function as therapeutics. For de novo proteins to be useful as drugs, 
they will need to exhibit serum stability, minimal immunogenicity and 
other developability traits.

Conclusion
New end-to-end pipelines reduce the labor needed to design proteins, 
democratizing protein design, lowering the barrier to entry and enrich-
ing the space of experiments that can be tried. We expect capabilities 
and performance to continue to grow as modeling techniques con-
tinue to improve and the field generates more data, making headway 
toward functional de novo design (Fig. 6). At the same time, it is hard 
to understate the need for continued biophysical learning in this new 
age of automated protein design. Nature remains full of complex bio-
logical systems that we are only beginning to understand, and, in the 
absence of perfect data, the only way to generalize to all cases is with 
a causal model. As is often true in science and in protein design, the 
first forays into uncharted directions of research are opened by care-
ful observation and reasoning from first principles, and we expect it 
to remain so moving forward.
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